Mitochondrial GSH replenishment as a potential therapeutic approach for Niemann Pick type C disease

نویسندگان

  • Sandra Torres
  • Nuria Matías
  • Anna Baulies
  • Susana Nuñez
  • Cristina Alarcon-Vila
  • Laura Martinez
  • Natalia Nuño
  • Anna Fernandez
  • Joan Caballeria
  • Thierry Levade
  • Alba Gonzalez-Franquesa
  • Pablo Garcia-Rovés
  • Elisa Balboa
  • Silvana Zanlungo
  • Gemma Fabrías
  • Josefina Casas
  • Carlos Enrich
  • Carmen Garcia-Ruiz
  • José C. Fernández-Checa
چکیده

Niemann Pick type C (NPC) disease is a progressive lysosomal storage disorder caused by mutations in genes encoding NPC1/NPC2 proteins, characterized by neurological defects, hepatosplenomegaly and premature death. While the primary biochemical feature of NPC disease is the intracellular accumulation of cholesterol and gangliosides, predominantly in endolysosomes, mitochondrial cholesterol accumulation has also been reported. As accumulation of cholesterol in mitochondria is known to impair the transport of GSH into mitochondria, resulting in mitochondrial GSH (mGSH) depletion, we investigated the impact of mGSH recovery in NPC disease. We show that GSH ethyl ester (GSH-EE), but not N-acetylcysteine (NAC), restored the mGSH pool in liver and brain of Npc1-/- mice and in fibroblasts from NPC patients, while both GSH-EE and NAC increased total GSH levels. GSH-EE but not NAC increased the median survival and maximal life span of Npc1-/- mice. Moreover, intraperitoneal therapy with GSH-EE protected against oxidative stress and oxidant-induced cell death, restored calbindin levels in cerebellar Purkinje cells and reversed locomotor impairment in Npc1-/- mice. High-resolution respirometry analyses revealed that GSH-EE improved oxidative phosphorylation, coupled respiration and maximal electron transfer in cerebellum of Npc1-/- mice. Lipidomic analyses showed that GSH-EE treatment had not effect in the profile of most sphingolipids in liver and brain, except for some particular species in brain of Npc1-/- mice. These findings indicate that the specific replenishment of mGSH may be a potential promising therapy for NPC disease, worth exploring alone or in combination with other options.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی یک مورد بیماری Niemann Pick تیپ A

Niemann Pick type A is a very rare hereditary disease with an incidence 1 in 20000-40000 live birth, which is calassified as a shingolipidoses. The disease is marked by the abnormal accumulation of sphingomyelin in most tissues, secondary to sphingomylinase deficiency. The most clinical manifestations are: Splenohepatomegaly–cherry red maculae-neuropathologic findings . This is a ...

متن کامل

Aberrant Promoter Methylation Profile of Niemann-Pick Type C1 Gene in Cardiovascular Disease

Background: The protein of Niemann-pick type C1 (NPC1) gene promotes the egress of cholesterol from late endosomes and lysosomes to other cellular compartments and contributes to a process known as reverse cholesterol transport. This study aimed to examine whether promoter methylation of NPC1 is associated with risk of cardiovascular disease (CVD). Methods: Fifty CVD patients and 50 healthy sub...

متن کامل

Stem Cells in Niemann-Pick Disease

Neural stem cells are multi-potent and able to self renew to maintain its character throughout the life. Loss of self renewal ability of stem cells prevents recovery or replacement of cells damaged by disease with new cells. The Niemann-Pick type C1 (NPC1) disease is one of the neurodegenerative diseases, caused by a mutation of NPC1 gene which affects the function of NPC1 protein. We reported ...

متن کامل

The role of Purkinje cell-derived VEGF in cerebellar astrogliosis in Niemann-Pick type C mice

Niemann-Pick type C disease (NP-C) is a fatal neurodegenerative disorder caused by a deficiency of NPC1 gene function, which leads to severe neuroinflammation such as astrogliosis. While reports demonstrating neuroinflammation are prevalent in NP-C, information about the onset and progression of cerebellar astrogliosis in this disorder is lacking. Using gene targeting, we generated vascular end...

متن کامل

Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function.

Niemann-Pick type C1 (NPC1) disease is a fatal hereditary disorder characterized by a defect in cholesterol trafficking and progressive neurodegeneration. Although the NPC1 gene has been identified, the molecular mechanism responsible for neuronal dysfunction in brains of patients with NPC1 disease remains unknown. This study demonstrates that the amount of cholesterol within mitochondria membr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017